ГЛАВА III — часть 2
Комбинации… комбинации...
А сколько вариантов будет при числе подходов четыре или пять? Особый интерес для нас представляет случай, когда число подходов равно шести или больше, потому что именно этот случай полностью соответствует условиям игры ЛОТТО «МИЛЛИОН». Нетрудно убедиться, что полное число вариантов различных подходов соответствующей игры с n подходами равно 2**n(2 в степени n). Действительно, при одном подходе (n=1) возможны два варианта («угадал» или «не угадал»), так как 2**n=2**1=2. При числе подходов n=2, полное число вариантов равно 4 («угадал + угадал». «угадал + не угадал», «не угадал + угадал», «не угадал + не угадал») в соответствии с предложенной нами формулой 2**n=2**2=4. Как мы убедились выше, при трех подходах число возможных вариантов равно 8, что также согласуется с формулой 2**n=2**3=8. Продолжая эту цепь рассуждений, можно найти полное число возможных вариантов для четырех подходов 2**n=2**4=16, для пяти подходов 2**n=2**5=32 и т.д.